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An approach to assess critical fuel configurations using robust flutter analysis is presented. A realistic aircraft

model is considered to demonstrate how an available finite element model can be adapted to easily apply robust

flutter analysis with respect to structural variations such as fuel-level variations. The study shows that standard

analysis tools can be used to efficiently generate the system data that are required to perform robust flutter analysis.

The�-kmethod is used to compute the worst-case flutter speed, and the corresponding worst-case fuel configuration

is found. The main advantage of the proposed approach is that � analysis guarantees robustness with respect to all

possible fuel configurations represented by the tank model.

Introduction

T O CERTIFY new or modified aircraft, a large number of flutter
analyses have to be performed to ensure that all configurations

of the aircraft are free from flutter. All aerodynamic and structural
variations have to be assessed; for example, mass variation due to
fuel burn. Combining all possible variations, the number of
configurations increases rapidly. Consequently, only a subset of all
configurations can realistically be treated, meaning that the most
critical configuration may not be detected.

In this paper, the possibility to use robust flutter analysis to ensure
flutter stability for a range of different aircraft configurations is
investigated. With this approach, a numerical model that depends on
a set of bounded parameters defining the different configurations is
developed, and a robust flutter analysis is performed to determine the
flight condition in which some of the possible configurations
becomes critical. Robust tools from the control community [1] are
used to perform the robust flutter stability analysis. Robust flutter
analysis has been the focus of research for some years, in which the
structured singular value�was considered to compute robust flutter
bounds based on modeling uncertainties [2,3]. Studies specifically
aiming at structural uncertainties and variations have been presented
[4–6]. In the present study, the �-k method [7–9] for robust flutter
solutions is used for this purpose. The �-kmethod extends standard
frequency-domain flutter analysis to take model uncertainty into
account and allows for reuse of existing flutter models and results.

In a previous study, the impact of a varying concentrated mass on
the flutter speed of a simple wind-tunnel model was successfully
treated with this approach [10]. This study focused on the influence
of structural mode-shape variations on the robust flutter speed. The
present study aims at demonstrating the same technique in the case of
a high-fidelity aircraft model, in which an approach for modeling
realistic fuel-level variations is presented, and robust analysis is used
to assess critical fuel configurations. In addition, procedures to
account for mode-shape perturbations due to structural variations are
further investigated.

Aircraft Model

A generic subsonic aircraft with a wingspan of 17 m and an aspect
ratio of 15.5 is considered to demonstrate the approach. The aircraft
is a glider aircraft with geometric and structural properties that are
similar to typical high-altitude long-endurance aircraft. Because the
aircraft has been investigated in previous studies, a Nastran shell
model of the structure was available [11,12]. Figure 1 shows the
finite element discretization of the aircraft structure.

The model consists of approximately 12,000 grid points with a
total of n� 70; 000 degrees of freedom; 23,000 triangular and
quadrilateral plate elements and some beam elements are used.
Unlike the original glider aircraft, tanks were modeled in the wings
and coupled to the structure using linear interpolation elements in
Nastran. These elements couple inertial forces from the tank to the
structure without contributing to the structural stiffness.

Approximately 2000 doublet-lattice panels representing the lifting
surfaces were defined in Nastran and interpolated to the structure
using thin-plate splines. Control surfaces were modeled to allow
interaction between elastic modes and control-surface deflections.
Because it turned out that the critical flutter mechanism is symmetric
with respect to the aircraft symmetry plane, the rudder and
antisymmetric aileron degrees of freedomwere locked, to reduce the
complexity of the model.

Modeling of Fuel Variation

A realistic fuel-tank geometry for the aircraft was defined as
shown in Fig. 2, with the tanks being symmetric with respect to the
x–z plane. Two different configurations were considered, denoted as
configurations A and B, according to the figure. The simplest way to
consider fuel variation in flutter analysis is to introduce a parameter
that describes the fuel level and to perform flutter analyses for a set of
different fuel levels. Using multiple parameters to model different
fuel distributions would, however, increase the number of required
flutter analyses significantly. Using an approach based on robust
analysis, multiple parameters can be treated more efficiently. To
demonstrate this, the tank was discretized as shown in the figure, in
which a case with four tank elements is shown.

Each of the tank elementsTi wasmodeled as shown in Fig. 3. Note
that it is essential to describe the mass variation as a polynomial
function of some parametric variation �. In the most simple case, the
mass variation can be described as a linear function of the variation
parameter. To obtain linearity in the present case, the tank boundaries
for configuration A were simplified, as indicated in the figure. This
reduces the complexity and size of the problem, as will be discussed
later. Note that the simplified description may be improved by
compensating for geometric approximations by modifying
parameters such as the fuel density. In the present study, it was not
considered necessary to compensate for the simplified geometry.
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Using the notation defined in Fig. 3, the fuel level li and the fuel
mass mi within each element become

li �
�
�i � 1

2

�
hi (1)

mi �
�
�i � 1

2

�
Mi (2)

with Mi � �fsicihi being the maximum fuel mass, where �f is the
fuel density, and si, ci, and hi are the tank element dimensions, as
shown in the figure. The fuel level li in each of the tank elements Ti is
represented by the parameter �i with�1 � �i � 1, where �i � 1 and
�i ��1 correspond to a full and empty tank, respectively. Using the
simplified model, the mass moment of inertia around the center of
mass of the fuel can be written as

Ixx;i �
mi��i�
12

h
l2i ��i� � s2i

i
(3)

Iyy;i �
mi��i�
12

h
c2i � l2i ��i�

i
(4)

Izz;i �
mi��i�
12

�
c2i � s2i

�
(5)

Because mass and fuel level depend linearly on �i, the mass
moment of inertia depends on �i, �

2
i , and �

3
i . Note that both the mass

andmassmoment of inertia will contribute linearly to elements in the
mass matrix of the finite element model. Therefore, the mass matrix
also depends on the variation parameter to the third power. If fuel
level and fuel mass depend on � to some higher order, the order of the
terms in the mass matrix will increase accordingly. Also note that
there is no coupling between the different �i.

Varying Mass Matrix

To apply robust analysis, the mass variation must be posed in the
form of a varying mass matrix that depends on some vector �
containing variation parameters �i. As noted earlier, the mass matrix
can be written as

M ��� �M0 �
Xr
i�1

�iMi1 � �2iMi2 � �3iMi3 (6)

where r is the number of tank elements andMij are matrices to be
determined. The matrix denoted as M0 corresponds to the mass
matrix in which all �i equal zero, which means that all tank elements
are half-filled. There are several ways to determine the matricesMij.
For simple mass variations with few nonzero elements inMij, these
matrices can be derived by hand. Because of a more complex
variation of the mass matrix in the present case, Nastran was used to
compute multipleM��� for a set of �. Based on Eq. (6), the matrices
Mij were then determined by

M i1 ��1
2
M�i�1 � 8

3
M�i�0:5 � 1

6
M�i��1 � 2M0 (7)

M i2 � 1
2
M�i�1 � 1

2
M�i�1 �M0 (8)

M i3 �M�i�1 � 8
3
M�i�0:5 � 1

3
M�i��1 � 2M0 (9)

Note that the variation of �i is performed with �j � 0 for all j ≠ i.
Thus, (3r� 1) Nastran evaluations have to be performed to obtain all
Mij and M0. Note that Nastran is used to assemble the structural
matrices of the system and to reduce the matrices by applying
boundary conditions and multipoint constraints, but not to perform
any analysis. Both nominal and robust flutter analysis were
performed using Matlab and the Matlab �-Analysis and Synthesis
Toolbox [13].

Linear Fractional Transformation Form of Mass Matrix

To comply with the notation used in previous work on robust
flutter analysis [7,10], Eq. (6) can be rewritten according to

M ��� �M0 �ML1�MMR1 �ML2�
2
MMR2 �ML3�

3
MMR3

(10)

where

M L1 � �M11 M21 � � � Mr1	 (11)

�M � diag��1I; �2I; . . . ; �rI� (12)

Fig. 1 Shell model of the aircraft.
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Fig. 3 Simplified tank element.
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M R1 � �I I � � � I	T (13)

specify the linear perturbation of themassmatrix due to the variation,
and ML2, MR2, ML3, and MR3 define quadratic and cubic
contributions, with matrices formed accordingly. The size of �M

becomes �n 
 r� 
 �n 
 r�, with n being the number of degrees of
freedom of the finite element model of the aircraft structure. In many
practical applications, however, the rank of the perturbation matrices
Mij is very low, making �M excessively large, which increases the
required computational effort in the robust analysis. Tominimize the
size of �M, a singular value decomposition of the perturbation
matrices can be performed according to

M ij �Uij�ijV
T
ij (14)

where �ij is a diagonal matrix of size rank�Mij� containing the
singular values ofMij. The varying mass matrix can then be written
as

M ��� �M0 �M �
L1�

�
1M

�
R1 �M�

L2���
2 �2M�

R2 �M�
L3���

3 �3M�
R3

(15)

where

M �
L1 � �U11�11 U21�21 � � � Ur1�r1	 (16)

��
1 � diag��1I�11

; �2I�21
; . . . ; �rI�r1 � (17)

M �
R1 � �V11 V21 � � � Vr1	 (18)

define the decomposed form of the first-order mass uncertainty, and
the higher-order contributionsM�

L2,M
�
R2,M

�
L3 andM

�
R3 are formed

accordingly. Note that the uncertainty matrices ��
i consist of r

blocks, but that the size of these blocks in generalmay be different for
different i, depending on the rank of the corresponding perturbation
matrix.

To take the varyingmass into account in the robust flutter analysis,
it is useful to pose the variations in the form of linear fractional
transformations (LFTs) [14]. Figure 4 shows the varyingmassmatrix
M���, mapping structural accelerations a to the inertial forces fM,
and the equivalent LFT.

The mapping can be interpreted as a variable matrix M��� from
accelerations to inertial forces and is equivalent to the varying mass
matrix. From Eq. (15), the matrices ��

M and PM are derived:

P M �

0 0 0 0 0 0 M�
R3

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 M�
R2

0 0 0 1 0 0 0

0 0 0 0 0 0 M�
R1

0 0 M�
L3 0 M�

L2 M�
L1 M0

2
66666664

3
77777775

(19)

��
M � diag

�
��

3 ;�
�
3 ;�

�
3 ;�

�
2 ;�

�
2 ;�

�
1

�
(20)

which shows that the higher-order variations ���
M�2 and ���

M�3 are
replaced by a linear variation of larger size. This can be done
regardless of the order of the polynomial in Eq. (15), and higher-
order descriptions of Eqs. (1) and (2) will simply increase the size of
��
M. The mapping from a to fM can now be written as

fM �M���a� F u�PM;��
Mj	a (21)

where F u�PM;��
M	 denotes the upper linear fractional trans-

formation, shown in Fig. 4. This form of the variation can now be
exploited for assembly of the total system to perform robust analysis.

Robust Analysis

The uncertainflutter equation accounting for parametric variations
in the system matrices can generally be written as a nonlinear
eigenvalue problem:

�M��M�p2 � �L2=V2�K��K� � ��L2=2�Q��Q; p�	v� 0 (22)

where p� g� ik is the complex eigenvalue with damping g and
reduced frequency k, and v is the eigenvector. The reference length is
L, and the airspeed and air density are denoted as V and �,
respectively. In general, variations �M, �K , and �Q can be defined for
the mass matrix M, the stiffness matrix K, and the aerodynamic
matrix Q, respectively.

In the present case, there is no variation in the stiffness matrix K.
For purely real variations, available solution algorithms may require
a computational effort that grows exponentially with the size of the
problem [15], making the problem infeasible to solve for practical
applications. Furthermore, the robustness margin is not necessarily a
continuous functionwhen considering purely real uncertainty blocks
only, which is pointed out in [13,16]. The problem can be solved
much more efficiently if some complex-valued variation is
introduced. This can be accomplished by either introducing some
small nonphysical variation or, as done in the present study, by
introducing some uncertainty in the aerodynamic loads. Some
complex-valued uncertainty according to

Q �Q0 �QL�QQR (23)

is defined, whereQ0 is the nominal aerodynamic matrix,QL � wQI
contains a real scaling factor wQ > 0, �Q � �QI contains the
complex-valued uncertainty parameter �Q, and QR �Q0. The
uncertainty corresponds to a uniform perturbation of the
aerodynamic forces with j�Qj � 1, where wQ bounds the
perturbation. In the present study, the uncertainty bound wQ �
0:02 was chosen, corresponding to a uniform perturbation of the
pressure coefficients on all aerodynamic panels by 2%.The uncertain
aerodynamic matrix can be written as an upper LFT F u�PQ;�Q	,
where PQ is derived as

P Q �
0 QR

QL Q0

� �
(24)

The uncertain flutter equation is then written in the LFT form

fF u�PM;��
M	p2 � �L2=V2�K � ��L2=2�F u�PQ�p�;�Q	gv� 0

(25)

which can be posed in the form

F u�P�p�;�	v� 0 (26)

using simple LFT operations, with �� diag���
M;�Q�. With this

formulation of the uncertain flutter equation, structured singular
value (or �) analysis can directly be applied to detect the flight
condition in which some structured � with k�k2 � 1 enables a
critical eigenvalue p� ik at some reduced frequency k [9].

Modal Reduction

The system matrices in Eq. (22) are generally large: in the present
test case, about 70; 000 
 70; 000. To reduce the computational
effort, modal projection is used. A subset of modal coordinates is
introduced according to

v� Z� (27)

M (δ )
fM a

∆ Σ
M

fM
a

PM

Fig. 4 Equivalent LFT description forM.
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where the columns of Z hold structural eigenvectors zi, and the
modal coordinate �i describes the participation of the ith structural
eigenvector. By projection of the flutter equation onto the modal
subspace, the size of the eigenvalue problem is reduced to the number
of considered eigenmodes m. This number has to be chosen
sufficiently large to obtain accurate results, but is usually several
orders of magnitude smaller than the number of the degrees of
freedom. In addition to reducing the size of the system matrices,
modal projection may also reduce the size of the uncertainty
description. In particular, in cases in which the rank of the
perturbation matrix is larger than the number of considered modes,
the modal projection will lead to a minimum block size of the
uncertainty matrix �, reducing the computational effort of the �
analysis.

A concern in robust analysis with varying structural properties is,
however, that the modal base Z depends on these variations. In a
previous study [10], the impact of mode-shape variations was
investigated, and different ways to account for it were proposed. A
summary of these approaches is given next.

Increased modal-base: Mode-shape variations can be accounted
for by including mode-shape derivatives with respect to the r
variation parameters. The extended modal base can be written as

Z ext � �Z Z�	 (28)

Z� � �v11v12 � � � v1rv21v22 � � � v2r � � � vm1vm2 � � � vmr	
(29)

vij �
@zi
@�j

(30)

where the eigenvector derivatives vij are computed as described in
[17]. The idea of extending the modal base is to include new vectors
that point in the directions in which the mode shapes are perturbed.
For example, Fig. 5 shows the sixth eigenmode and its derivative due
to fuel-level variation in tank element 1.

Including all possible derivatives in Z�, however, may lead to
similar vectors in the extendedmodal base, leading to ill-conditioned
projected matrices causing numerical problems. Therefore, only the
most relevant vectors inZ� are included. To formulate a criterion for
selecting additional vectors, the derivative vectors are first
normalized to equal norm, and the orthogonal component v?ij of

each additional vector vij with respect to the vectors in the modal
base is computed using Gram–Schmidt orthogonalization [18] such
that

Z Tv?ij � 0; �v?ij�Tv?ij � �ij (31)

This ensures that only the perpendicular component of any
eigenvector derivative will be added to the existing modal base. As a
criterion for selecting themost relevant additional vector, the normof
v?ij is considered, and the vector with the largest norm is chosen. Note

that it is essential to include one vector at a time and to repeat the
orthogonalization and selection to ensure that the included vectors
are orthogonal to each other and to the current modal base, and to
prevent similar vectors from being included.

Iterative modal base: With this approach, the resulting worst-case
configuration from the robust analysis is used to compute a new
modal base. The new modal base is then used for the modal
projection in the analysis. This is done iteratively, until the resulting
worst-case perturbation matches the current modal base. The
iterations are terminated when two consecutive iterations h and
h� 1 fulfill

k��
M�h� 1� ���

M�h�k1 < � (32)

where � is a specified tolerance parameter: in the present study,
chosen as 10�3. Although appealing due to preserving a small size of
the problem in each iteration, a drawback is that the worst-case
perturbation is computed by solving a nonconvex optimization
problem, and the global worst-case perturbation is not necessarily
found.

Results

To obtain sufficiently accurate results, the first 40 eigenmodes
were selected to establish the reduced modal base. Because the
critical flutter mechanism is symmetric with respect to the x-z plane,
only symmetric modes were considered, thus reducing the modal
base to 19 eigenvectors. Nominal p-k flutter analysis [19] of the case
with empty tanks gave a flutter speed of u� 100 m=s at a frequency
f� 9:4 Hz. Adding an aerodynamic uncertainty with a bound of
wQ � 0:02, the robust flutter speed without mass variations was
reduced to u� 99 m=s. The aerodynamic uncertainty was then kept
at the same level throughout the analysis. Thus, proper robust
analysis should yield worst-case flutter speeds of 99 m=s or below.
The robust analysis for finding the worst-case flutter speed and the
corresponding fuel configuration was performed for two different
tank configuration with four tank elements. In addition to
configuration A, shown in Fig. 2, configuration B was also
investigated.

The robust results for the different tank configurations are
summarized in Table 1. The first row summarizes the nominal flutter
speed unom for the different tank configurations in which all tanks are
half-filled (�i � 0 for all tanks). The robust flutter speed using the
original modal base is denoted as urob, and �wc is the corresponding
worst-case configuration found by the � analysis that was used to
update the modal base for the iterative approach. Results from the
iterative algorithm for updating the modal base are included as well,

denoted as ûrob and �̂wc, respectively.
In configuration A, the tanks were distributed inside the wing. The

maximum fuel weight of the entire tank was about 60 kg per wing.
Note that the weight of the aircraft without fuel and payload was
380 kg. The resulting nominal analysis for �� 0 provided a flutter
speed of 143 m=s. Using robust analysis, the robust flutter speedwas
reduced significantly to 105 m=s, along with a worst-case �i ��1
for all tank elements, corresponding to an empty tank. This result,
however, is not robust with respect to the flutter speed of the empty-
tank configuration, which is known to be 99 m=s with the
aerodynamic uncertainty. The reason for this was found to be an
insufficient modal base. To improve the result, the modal base was
adapted to account for mode-shape variations due to structural
variations.

Using the iterative approach for computing the perturbed modal
base provided correct results, and a robust flutter speed of 96 m=s
was obtained. Because the worst-case perturbation was equal to �1
for all tanks in both the first and the second iterations, the iterative

Fig. 5 Shape and derivative of the sixth structural eigenmode.

Table 1 Robust flutter results

Config. A Config. B

unom 143 m=s 109 m=s
urob 105 m=s 102 m=s
�wc ��1;�1;�1;�1	 ��1;�1;�1; 0:22	
ûrob 96 m=s 97 m=s

�̂wc ��1;�1;�1;�1	 ��1;�1;�1; 0:22	
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approach had converged according to Eq. (32) after one step. The
obtained robust flutter speed was slightly conservative with respect
to the knownflutter speed of 99 m=s, the reason for this being the fact
that the�-k algorithm is based on an upper-bound estimation of the�
value to guarantee robustness.

In configuration B, a slender tank with a total fuel weight of 16 kg
per half-wing was considered. For the tank configuration B shown in
Fig. 2, the nominal flutter speed was 109 m=s. Using the robust
analysis, the flutter speed was reduced to 102 m=s with the original
modal base, along with a worst-case perturbation corresponding to a
fuel distribution in which only the rear tank element is filled. Again,
this result is not robust, the reason being an incorrect modal base.

For this tank configuration, it appeared that there is a fuel
configuration that is worse than empty tanks. Further, it was found
that the resulting worst-case perturbation is dependent on the tools
used for computing the � value. In general, the � value cannot be
evaluated exactly and has to be estimated by upper and lower bounds
[13]. Figure 6 shows the upper and lower bounds of� as a function of
the reduced frequency k for some given airspeed for configuration B.

The lower bound corresponds to some � found by optimization
and corresponds to the exact� value if the global optimum has been
found. Because this cannot be guaranteed, however, the upper bound
must be considered to guarantee robustness with respect to the
uncertainty parameters. In�-k flutter analysis, the upper-bound peak
is considered, and robust stability for some given airspeed is
guaranteedwhen the peak is below one. An obvious problem appears
when the upper and lower bounds differ significantly. In the present
case, the peaks appear at different frequencies. According to the
iterative algorithm, the worst-case perturbation is to be computed at
the reduced frequency krob of the upper-bound peak, leading to a
perturbation that is not worst-case according to the lower bound.
Also for this tank configuration, one outer iteration was required to
make the iterative approach converge. For both configurations, it was
found that the worst-case perturbation was less sensitive to an
incorrect modal base than the related flutter speed, therefore making
the iterative approach converge in one step only.

A number of nominal flutter analyses were performed for different
filling levels of the rear tank, and it was found that a full rear tank in
fact leads to the lowest flutter speed at 98 m=s with aerodynamic
uncertainty, thus confirming the prediction of the lower-bound
graph. Despite this, the modal base was updated according to the
iterative algorithm using the perturbation corresponding to the
frequency of the upper-bound peak, and it was found that the
perturbation is close enough to the worst-case perturbation and that
the modal base was perturbed sufficiently to yield robust results. The
resulting robust flutter speed of 97 m=s is slightly conservative with
respect to theflutter speed found by the nominal analysis, with afilled
rear tank at 98 m=s.

Increasedmodal base: It was found that increasing themodal base
by mode-shape derivatives did not perturb the modal base
sufficiently to obtain correct results in the robust analysis. One of the
main problems when including mode-shape derivatives is that the
computation of mode-shape derivatives is computationally
expensive for a realistic aircraft model with a large number of
degrees of freedom. In addition, it is not obvious which derivatives
should be included in the modal base to adapt the modal base to the
perturbed structurewithout making the projected systemmatrices ill-
conditioned.

Finally, it was also found that simply increasing the size of the
modal base did not improve results verymuch. This may be obvious,
because the perturbation does typically not disturb the structural
mode shapes in a way that can be captured by a moderate number of
additional eigenmodes.

For both approaches considering an increased modal base, the
robustflutter speedwas not changed significantly, comparedwith the
robust analysis based on the nominal modal base.

Computational effort: Themost significant computational effort is
spent on solving the � problem based on Eq. (26), and the solution
time was found to depend cubically on the size of �. As discussed
earlier, the minimum size of the structured uncertainty for each
uncertainty parameter is either the number ofmodes or the rank of the
perturbation matrix. In the present case, the rank of the perturbation
matriceswas 12 or less in all considered cases,whereas the number of
modes used in the analysis was 19. Increasing the number of modes
bymode-shape derivatives therefore had no significant impact on the
computational effort needed for solving the� problem. In the present
case, one � evaluation with four variation parameters took
approximately 10 s on a 2.5-GHz Pentium computer. Note that the
computational effort generally depends on the size of the structural
(real-valued) uncertainties, and the size of the aerodynamic
(complex-valued) uncertainty in the present study does not have any
significant impact, due to its simplicity. Depending on the algorithm
used for bounding the� peak, up to 100 evaluations may be required
to solve the robust flutter problem for one mode.

Conclusions

It was shown that robust flutter analysis can be used for assessing
the influence of fuel variations on the flutter boundary. The presented
approach is more efficient than considering different configurations
by hand and guarantees robustness with respect to the flutter speed
for all possible configurations. From investigations with different
fuel-tank geometries and discretizations, it was found that there may
be worst-case configurations that cannot be captured whenmodeling
the fuel level in the entire tank using one parameter only.

Although it is a secondary effect in terms of the impact on the
flutter speed, the variation of the structural mode shapes due to fuel
variations can play a significant role. In the present case, the flutter
speed was overestimated when neglecting this effect. Including
eigenmode derivatives with respect to the uncertainty for extending
the modal base seems insufficient and is computationally expensive
when mode-shape derivatives of complex aircraft structures have to
be computed. Using an iterative base yields good results at less
computational effort, but there is no guarantee for convergence of the
iteration. The obtained solution can, however, be judged by
considering the upper and lower bounds of the obtained � value to
increase the reliability of the robust boundary.

This study also demonstrated that commercial analysis tools such
as Nastran can efficiently be used to generate the database needed to
perform robust flutter analysis considering structural variations.
Because these tools are frequently used in aircraft design and
certification analysis, numerical models of the nominal configura-
tions often exist, making robust analysis accessible with modest
additional modeling effort.

The �-k algorithm is also efficient in terms of exploiting nominal
flutter results, because the frequency of the nominal mode can be
used as an initial guess when bounding the peak in the �-k graph.
When large structural variations are present, however, finding the
critical peak is more difficult, because the peak location may deviate

k

µ

1

k
rob

rear tank 100% filled
(k = 0.3042)

upper bound 

lower bound 

rear tank
partially filled
(k=0.3089)

all tanks empty 

rear tank 100% filled
front tank partially filled
(k = 0.3000)

Fig. 6 Upper and lower bounds of frequency-dependent � value.
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significantly from the nominal frequency, due to the impact of the
variations on the structural eigenfrequencies. In addition, the critical
flutter mechanism may change, making it necessary to perform a
robust flutter analysis of several modes.
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